×

Yttrium
Yttrium

Néodyme
Néodyme



ADD
Compare
X
Yttrium
X
Néodyme

Yttrium vs Néodyme

Add ⊕
1 Tableau périodique
1.1 Symbole
Y
Nd
1.2 Numéro de groupe
31
Gadolinium Métal
0 17
1.3 Nombre de Période
56
Lithium Métal
2 7
1.4 Bloque
d
f
1.5 famille Element
Transition
lanthanides
1.6 Numero CAS
74406557440008
Aluminium Métal
7429905 54386242
1.7 Nom Space Group
P63/mmc
P63/mmc
1.8 Espace numéro de groupe
194,00194,00
Plutonium Métal
11 229
2 Faits
2.1 Tous les faits
  • Yttrium métal est très toxique.
  • Yttrium métal est très réactif dans la nature ne sont donc pas trouvé libre dans la nature.
  • Neodymium ne se trouve pas libre dans la nature, il est donc pas un métal natif.
  • métal néodyme trouvés dans des minéraux comme Monazite et Bastnaesite.
2.2 Sources
Trouvé dans les Minéraux, Exploitation minière, Minerais de minéraux
Trouvé dans les Minéraux, Exploitation minière
2.3 Histoire
2.3.1 Qui a découvert
Johan Gadolin
Carl Auer von Welsbach
2.3.2 Découverte
En 1794
En 1885
2.4 Abondance
2.4.1 Abondance Dans Univers
7 * 10-7 %1 * 10-6 %
Thallium Métal
5E-09 0.11
2.4.2 Abondance Dans Sun
~0.0000001 %~0.0000003 %
Béryllium Métal
1E-08 0.1
2.4.3 Abondance Dans Météorites
0,00 %0,00 %
Or Métal
1.7E-07 22
2.4.4 Abondance Dans la croûte terrestre
0,00 %0,00 %
Radium Métal
9.9E-12 8.1
2.4.5 Abondance Dans les océans
0,00 %0,00 %
Protactinium Métal
2E-23 1.1
2.4.6 Abondance Dans les humains
IndisponibleIndisponible
Radium Métal
1E-13 1.4
3 Usages
3.1 Utilisations et avantages
  • métal yttrium est utilisé dans différents alliages, car il augmente la résistance de l'alliage d'aluminium-magnésium.
  • Il est utilisé pour le filtre à micro-ondes radar.
  • alliage néodyme-fer-bore est utilisé pour fabriquer des aimants permanents.
  • Il est utilisé dans les microphones, lecteur MP3, haut-parleurs, téléphones mobiles, etc.
3.1.1 utilisations industrielles
Industrie électrique, Industrie électronique
Industrie aérospaciale, Industrie électrique, Industrie électronique
3.1.2 Utilisations médicales
N / A
N / A
3.1.3 Autres utilisations
Alloys
Alloys
3.2 Propriétés biologiques
3.2.1 Toxicité
Extrêmement toxique
non toxique
3.2.2 Présent dans le corps humain
3.2.3 In Blood
0,00 Sang / mg dm-3Indisponible
Plutonium Métal
0 1970
3.2.4 Dans os
0,07 ppmIndisponible
Plutonium Métal
0 170000
4 Physique
4.1 Point de fusion
1 523,00 °C1 010,00 °C
Francium Métal
27 3410
4.2 Point d'ébullition
3 337,00 ° C3 127,00 ° C
Flérovium Métal
147 5660
4.3 Apparence
4.3.1 État physique
Solide
Solide
4.3.2 Couleur
Blanc argenté
Blanc argenté
4.3.3 Lustre
N / A
Métallique
4.4 Dureté
4.4.1 Dureté Mohs
IndisponibleIndisponible
Césium Métal
0.2 8.5
4.4.2 Dureté Brinell
589,00 MPa265,00 MPa
Césium Métal
0.14 3490
4.4.3 Dureté Vickers
Indisponible345,00 MPa
Palladium Métal
121 3430
4.5 Vitesse du son
3 300,00 Mme2 330,00 Mme
Thallium Métal
818 16200
4.6 Propriétés optiques
4.6.1 Indice de réfraction
IndisponibleIndisponible
Mercure Métal
1.000933 1.7229
4.6.2 Réflectivité
IndisponibleIndisponible
Molybdène Métal
58 97
4.7 allotropes
4.7.1 α Allotropes
Indisponible
Indisponible
4.7.2 ß Allotropes
Indisponible
Indisponible
4.7.3 γ Allotropes
Indisponible
Indisponible
5 Chimique
5.1 Formule chimique
Y
Nd
5.2 Isotopes
5.2.1 Isotopes connus
1930
Tennessine Métal
0 38
5.3 Électronégativité
5.3.1 Pauling Electronégativité
1,221,14
Francium Métal
0.7 2.54
5.3.2 Sanderson Electronégativité
0,65Indisponible
Césium Métal
0.22 2.56
5.3.3 Allred Rochow Electronégativité
1,111,07
Césium Métal
0.86 1.82
5.3.4 Mulliken Jaffe Electronégativité
IndisponibleIndisponible
Césium Métal
0.62 2.48
5.3.5 Allen Electronégativité
1,12Indisponible
Césium Métal
0.659 2.7
5.4 Électropositivité
5.4.1 Pauling électropositivité
2,782,86
Or Métal
1.46 3.3
5.5 Energies Ionisation
5.5.1 1er niveau d'énergie
600,00 kJ / mol533,10 kJ / mol
Césium Métal
375.7 26130
5.5.2 2ème niveau d'énergie
1 180,00 kJ/mol1 040,00 kJ/mol
Ruthénium Métal
710.2162 28750
5.5.3 3ème niveau d'énergie
1 980,00 kJ/mol2 130,00 kJ/mol
Osmium Métal
1600 34230
5.5.4 4ème niveau d'énergie
5 847,00 kJ / mol3 900,00 kJ / mol
Thorium Métal
2780 37066
5.5.5 5ème niveau d'énergie
7 430,00 kJ / molIndisponible
Dubnium Métal
4305.2 97510
5.5.6 6ème niveau d'énergie
8 970,00 kJ / molIndisponible
Seaborgium Métal
5715.8 105800
5.5.7 7ème niveau d'énergie
11 190,00 kJ / molIndisponible
Bohrium Métal
7226.8 114300
5.5.8 8e niveau d'énergie
12 450,00 kJ / molIndisponible
Hassium Métal
8857.4 125300
5.5.9 9e niveau d'énergie
14 110,00 kJ / molIndisponible
Sodium
14110 134700
5.5.10 10ème niveau d'énergie
18 400,00 kJ / molIndisponible
Strontium Métal
17100 144300
5.5.11 11ème niveau d'énergie
19 900,00 kJ / molIndisponible
Cuivre
19900 169988
5.5.12 12ème niveau d'énergie
36 090,00 kJ / molIndisponible
Molybdène Métal
22219 189368
5.5.13 13 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
26930 76015
5.5.14 14 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
29196 86450
5.5.15 15 Niveau énergie
IndisponibleIndisponible
Manganèse Métal
41987 97510
5.5.16 16 Niveau énergie
IndisponibleIndisponible
Fer Métal
47206 109480
5.5.17 17 Niveau énergie
IndisponibleIndisponible
Cobalt Métal
52737 122200
5.5.18 18 Niveau énergie
IndisponibleIndisponible
Nickel Métal
58570 134810
5.5.19 19ème niveau d'énergie
IndisponibleIndisponible
Cuivre Métal
64702 148700
5.5.20 20 Niveau d'énergie
IndisponibleIndisponible
Molybdène Métal
80400 171200
5.5.21 21 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
87000 179100
5.5.22 22e Niveau énergie
IndisponibleIndisponible
Molybdène Métal
93400 184900
5.5.23 23 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
98420 198800
5.5.24 24 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
104400 195200
5.5.25 25 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
121900 121900
5.5.26 26 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
127700 127700
5.5.27 27 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
133800 133800
5.5.28 28 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
139800 139800
5.5.29 29e Niveau énergie
IndisponibleIndisponible
Molybdène Métal
148100 148100
5.5.30 30 Niveau énergie
IndisponibleIndisponible
Molybdène Métal
154500 154500
5.6 Equivalent Electrochemical
1,11 g/amp-hr1,79 g/amp-hr
Béryllium Métal
0.16812 8.3209
5.7 Fonction Electron travail
3,10 (eV)3,20 (eV)
Césium Métal
2.14 5.65
5.8 Autres propriétés chimiques
Stabilité chimique, Inflammable, ionisation, isotopes radioactifs, Solubilité
Stabilité chimique, Corrosion, Inflammable, ionisation
6 Atomique
6.1 Numéro atomique
3960
Lithium Métal
3 117
6.2 Configuration de l'électron
[Kr]4d15s2
[Xe] 4f46s2
6.3 Structure en cristal
Hexagonal Fermer Emballé
Double Hexagonal Fermer Emballé
6.3.1 réseau cristallin
6.4 Atome
6.4.1 Nombre de Protons
3960
Lithium Métal
3 117
6.4.2 Nombre de Neutrons
5084
Lithium Métal
4 184
6.4.3 Nombre de Electrons
3960
Lithium Métal
3 117
6.5 Rayon d'un Atom
6.5.1 Rayon atomique
180,00 pm181,00 pm
Béryllium Métal
112 265
6.5.2 covalent Radius
190,00 pm201,00 pm
Béryllium Métal
96 260
6.5.3 Van der Waals Radius
200,00 pm229,00 pm
Zinc Métal
139 348
6.6 Poids atomique
88,91 uma144,24 uma
Lithium Métal
6.94 294
6.7 Volume atomique
19,80 cm3 / mol20,60 cm3 / mol
Manganèse Métal
1.39 71.07
6.8 Numéros atomiques adjacentes
6.8.1 élément précédent
6.8.2 Suivant élément
6.9 Valence Electron Potentiel
48,00 (-eV)43,40 (-eV)
Francium Métal
8 392.42
6.10 Constante de réseau
364,74 pm365,80 pm
Béryllium Métal
228.58 891.25
6.11 Lattice Angles
π/2, π/2, 2 π/3
π/2, π/2, 2 π/3
6.12 Lattice C/A Ratio
1,571,61
Béryllium Métal
1.567 1.886
7 Mécanique
7.1 Densité
7.1.1 Densité à la température ambiante
4,47 (g/cm3)7,01 (g/cm3)
Lithium Métal
0.534 40.7
7.1.2 Densité Lorsque liquide (à m.p.)
4,24 (g/cm3)6,89 (g/cm3)
Lithium Métal
0.512 20
7.2 Résistance à la traction
IndisponibleIndisponible
Indium Métal
2.5 11000
7.3 Viscosité
IndisponibleIndisponible
Mercure Métal
0.001526 0.001526
7.4 Pression de vapeur
7.4.1 Pression de vapeur à 1000 K
0,00 (Pa)0,00 (Pa)
Cérium Métal
2.47E-11 121
7.4.2 Pression de vapeur à 2000 K
4,27 (Pa)101,00 (Pa)
Tungstène Métal
2.62E-10 774
7.5 Propriétés d'élasticité
7.5.1 Module de cisaillement
25,60 GPa16,30 GPa
Potassium Métal
1.3 222
7.5.2 Modulus Bulk
41,20 GPa31,80 GPa
Césium Métal
1.6 462
7.5.3 Module d'Young
63,50 GPa41,40 GPa
Césium Métal
1.7 528
7.6 Ratio de Poisson
0,240,28
Béryllium Métal
0.032 0.47
7.7 Autres propriétés mécaniques
Ductile
N / A
8 Magnétique
8.1 Caractéristiques magnétiques
8.1.1 densité
4,477,00
Lithium Métal
0.53 4500
8.1.2 Commande magnétique
Paramagnétique
Paramagnétique
8.1.3 Perméabilité
IndisponibleIndisponible
Bismuth Métal
1.25643E-06 0.0063
8.1.4 Susceptibilité
IndisponibleIndisponible
Bismuth Métal
-0.000166 200000
8.2 Propriétés électriques
8.2.1 propriété électrique
Conducteur
N / A
8.2.2 Résistivité
596,00 nΩ · m643,00 nΩ · m
Thallium Métal
0.18 961
8.2.3 Conductivité électrique
0,02 106/cm Ω0,02 106/cm Ω
Plutonium Métal
0.00666 0.63
8.2.4 Electron Affinity
29,60 kJ / mol50,00 kJ / mol
Mercure Métal
0 222.8
9 Thermique
9.1 Chaleur spécifique
0,30 J / (kg K)0,19 J / (kg K)
Américium Métal
0.11 3.6
9.2 Molar Capacité de chaleur
26,53 J/mol·K27,45 J/mol·K
Béryllium Métal
16.443 62.7
9.3 Conductivité thermique
17,20 W / m · K16,50 W / m · K
Neptunium Métal
6.3 429
9.4 Température critique
IndisponibleIndisponible
Ytterbium Métal
26.3 3223
9.5 Dilatation thermique
10,60 µm/(m·K)9,60 µm/(m·K)
Tungstène Métal
4.5 97
9.6 Enthalpie
9.6.1 Enthalpie de vaporisation
393,00 kJ / mol273,00 kJ / mol
Zinc Métal
7.32 799.1
9.6.2 Enthalpie de fusion
17,15 kJ / mol7,14 kJ / mol
Césium Métal
2.1 35.23
9.6.3 Enthalpie de Atomisation
418,00 kJ / mol322,00 kJ / mol
Mercure Métal
61.5 837
9.7 Norme Molar Entropy
44,40 J /mol.K71,50 J /mol.K
Béryllium Métal
9.5 198.1